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1.0  INTRODUCTION 

i.1  BACKGROUND 

The military services, like our society as a whole, are becoming 

increasingly dependent on the digital computer to provide the 

information processing power necessary to function in an increasingly 

complex environment.  When reliance is placed on a computer as a 

military decision aid or weapon system component, the reliability of 

that computer and of its software are matters of paramount importance. 

The cost of a critical failure or outage in this case may be measured 

not in terms of dollars or individual safety but in terms of national 

survival.  For this reason, establishing the reliability of software 

developed or delivered for use in its systems is of prime importance 

to the Air Force. 

Present technology does not permit "proving" the "correctness" 

of large software systems.  Instead, a degree of confidence must be 

established through some evaluation/testing procedure.  In testing 

its applications software, the Air Force at different times may 

assume either or both the roles of developer and acceptance tester [1]. 

As the developer of its own software, testing can sometimes proceed in 

a deductive manner based on knowledge of the internal logic of the 

program.  As acceptance tester for software developed under contract, 

to the extent that the internal logic is unknown testing must proceed 

empirically.  In neither case can absolute confidence be established, 

since complete testing of the program under all conditions is 

practically impossible. As stated by Gruenberger [2]:  "... the art 

lies in knowing what to test for, how to devise adequate tests, and 

when to stop testing." The problem is one of designing the checkout 

and testing process to obtain maximum confidence in the program 

within the resources available. 

The magnitude of resources involved is not small. An earlier, 

much-quoted report [3] estimates that roughly A5% to 50% of the total 

effort involved in a software project is typically spent in checkout 

and test activities. Further, that with current Air Force 

--—-  ■■ —        •  -   •■'- ■ - - - ..,—.-■ . 
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expenditures of $1 billion per year for software, techniques saving 

one man-day of checkout and test activity per man-month would save 

$20 - $25 million per year. 

As a result of all the factors mentioned, considerable attention 

has been focused on automated aids as ways to improve the efficiency 

of software development and of the testing activity in particular 

([^]» [5], [6]).  In discussing automated aids, however. Reifer [4] 

concluded that: 

"For all practical purposes, there exist no answers to the 
following questions:  What automated aids should we use and 
when in the life cycle should they be used? What are the 
effects of use?  What are the limitations?" 

This conclusion reflects the need for much more experience with 

such tools before conclusions may be drawn regarding their specific 

utility, the value of particular features, and optimum methods of 

application. 

1,2  PROJECT DEFINITION 

In late 1974, the Directorate of Information Systems, Air ^crce 

Systems Command (AFSC/ACD), decided to sponsor a project to exandne an 

automated program testing aid from the user's point of view.  A number 

of such aids were being advertised, interest in their use and benefits 

was high, but little information about them based on user experience 

was available. 

The Air Force Avionics Laboratory (AFAL) was similarly interested 

in information about available automated program verification aids. 

Air Force avionics software verification and maintenance facilities, 

both proposed and established, require the support of such aids in 

accomplishing their functions. The utility and features of available 

tools were thus of interest from the standpoint of near term 

applications.  In addition, areas found to be of particularly high 

potential benefit or areas found to be currently deficient could be 

used in planning research in avionics software verification technology. 

Finally, the Lab had in progress a number of software development 

projects in which it was felt an automated testing aid might be of 

6 
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benefit.  For these reasons, the Lab undertook the investigation 

sponsored by AFSC/ACD. 

The project had two principal objectives: 

(1) To examine the capabilities, utility, and features of^a 
currently available automated testing aid from a user's 

point of view, and 

(2) To provide testing support for AFAL and other software 

development projects. 

A number of automated aids to program testing arc available. 

Some have been developed as commercially marketable items in response 

to a perceived need.  Others werd developed (or are under development) 

to specification under contract.  Still others grew out of program 

verification research projects.  Several of the existing aids 

originated as a result of contractor efforts to automate the more 

tedious and error-prone manual processes associated with the software 

development portion of some contract.  These aids were adapted and 

refined until enough general utility was obtained to permit the aid 

to be considered a generally applicable tool.  (This development 

history is probably largely responsible for Reifer's [A] remark 

describing most automated aids as poorly structured, poorly documented, 

and poorly tested individual entities, not well integrated with each 

other and the people who use them.) 

The verification aid selected for the project was RXVP (Level 1), 

developed by General Research Corporation (GRC), Santa Barbara, 

California.  Several factors influenced this selection: 

(1) RXVP was operational and available for immediate 

installation. 

(2) RXVP was developed on the same family of computers as was 
to be used as host for the project.  Transferability 

problems would thus be minimized. 

(3) RXVP is advertised as being developed as "a complete, 
wholly integrated software verification system" offering 
"an organized approach to comprehensive testing" and 
supporting "the validation and verification effort through 
all its phases".  RXVP could thus be considered as a total 
system in support of testing activities rather than as a 
collection of Individual tools each providing support to 

some aspect of the testing process. 

'■tt-rrfc'-tfitri'-^■■Aiiiir^ti^ili*'i^,<^ilttii^mihifV'-tirttlTliaiM^
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(4) RXVP was found to offer the broadest range of features of 
any verification system for which information was available. 

(5) RXVP is based on a model of the iteration structure of 
FORTRAN programs.  This same model forms the basis for a 
verification system for JOVIAL language programs (Jovial 
Automated Verification System) being developed for Rome Air 
Development Center.  Examining RXVP and the use of this 
model might thus provide some advanced indication of the 
characteristics and capabilities of an automated testing aid 
soon to be a part of the Air Force inventory. 

In brief, the project was organized around four principal 

activities.  The contractor (GRC) installed and maintained the RXVP 

systen on the CDC CYBER 74 computer at ASD Computer Science Center, 

Wright-Patterson AFB, Ohio.  GRC also conducted a series of RXVP 

familiarization/training workshops for project participants and 

provided assistance to RXVP users as required.  AFAL used the system 

in testing activities for avionics support software being developed 

to execute on both the CDC machine and another computer.  A detailed 

examination of RXVP itself was then undertaken.  To provide a greater 

variety of FORTRAN programs used in the project, a broader range of 

opinions on which to base conclusions, and the advice of those more 

experienced with testing tools, individuals from several government 

agencies having interest and/or experience in automated test tool 

technology were invited to participate in the workshops and to use 

the RXVP system on their own programs.  These individuals made 

valuable contributions to the project.  Finally, to demonstrate 

expert application of the RXVP system in testing a program not 

familiar to the tester (as in the role of acceptance tester), CRC was 

to test a selected program developed by AFAL. 

1.3  RE' JRT ORGANIZATION 

The balance of this report discusses the details of the work 

accomplished during the project and the results obtained. 

Section 2.0 provides an overview of the RXVP system to 

familiarize the reader with pertinent terminology and characteristics. 

Section 3.0 presents the project objectives and procedures in 

more detail. 
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Section 4.0 contains the results and conclusions derived from 

the project activities. 

Section 5.0 summarizes salient conclusions about RXVP and 

automated testing tools in general, and presents recommendations 

based on those conclusions. 

No familiarity with the RXVP system is required for reading this 

report at a general level.  To understand some of the more specific 

comments and references, however, requires a degree of familiarity 

obtainable by reading the RXVP User's Guide and Reference Manual 

([9], [10]). 
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2.0     RXVP  OVERVIEW 

2. i  MVP. OBJEcmes 
RXVP is an automated software verification aid designed to assist 

in the test and verification of FORTRAN programs.  It performs a 

structural analysis of the subject program and stores the results in a 

data base.  Using the data base, RXVP can supply: 

static analyses of individual program modules and groups 

of modules 

. automatic instrumentation of the program control 

structure 

. instrumentation at the statement level for recording 
statistics on program variables 

. testing strategy guidance 

. assistance in generating test cases 

. quick-look and post-test analyses of testing coverage 

. post-test reports of program variable statistics. 

The objective of RXVP is to provide analysis services needed for 

the verification and validation of large FORTRAN software systems of 

up to one-thousand modules totaling up to two-hundred-fifty-thousand 

statements. 

RXVP is intended to support the verification and validation 

effort by promoting the systematic testing of single modules or groups 

of modules.  It provides the user with (1) test coverage documentation, 

detailing exactly what portions of the program modules were exercised, 

(2) test case generation assistance to help the user generate test 

cases to exercise untested portions of each module, and (3) static 

analyses providing information helpful in locating possible sources 

of program error. 

2.2 RXVP ORGANIZATION 

RXVP is organized into ten separate STEPs, each of which 

conducts a functionally related set of processing tasks, which 

communicate through a common data base. These STEPs and their 

associated functions are listed below: 

11 
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Source text input, lexical scan, 
syntactic recognition, and initial source 

library creation 

Structural analysis and execution path 
identification; library update with 
structure and path information 

Program instrumentation for execution 
path coverage analysis 

Execution of instrumented code and quick- 
look analysis of program path coverage 

Detailed analysis of program path 
coverage; execution traces and summary 
statistics 

Statement-level instrumentation for 
program performance analysis 

Detailed analysis of program performance 
with individual statement execution 

results 

Program static analysis; subroutine call 
sequences; array subscript checks; 
expression mode checks; etc. 

Test guidance providing rational, 
systematic testing strategy not immediate- 
ly visible from inspection of source text 

Assistance in the generation of test 
cases to exercise untested program paths. 

It should be noted here that all these STEPs need not, and probably 

will not, be executed in the above order. Neither will they all 

necessarily be executed in any one testing activity. 

Included in many of the processing STEPs is a data manager that 

provides library merging capabilities, report heading and subheading 

specifications, initialization commands processing, module selection, 

standard print-outs of library contents, and specification of 

alternative files to  be used during RXVP operation. 

RXVP uses a command language to provide control of the standard 

processing STEPs. Certain commands are known as "universal" because 

they are common to all STEPs while other commands are only recognized 

by certain STEPs. 

STEP 1 (BASIC) 

STEP 2 (STRUCTURAL) 

STEP 3 (INSTRUMENT) 

STEP 4 (QUICKLOOK) 

STEP 5 (ANALYZER) 

STEP 6 (SELFMET) 

STEP 7 (SMANALYZE) 

STEP 8 (STATIC) 

STEP 9 (GUIDE) 

STEP 10 (ASSIST) 

12 
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A random access file is used to record the original source text 

and associated tables containing structural information, symbols and 

their classification, and other module-descriptive information.  This 

random access file, known as the library, is created during the first 

processing step (STEP 1).  During the next step (STEP 2), the library 

is updated to include program structure information.  After STEP 2 

processing, the library is complete and is used as input for all 

remaining processing STEPs.  STEPS 1 and 2, therefore, need not be 

run again as long as the library is saved.  The major sections of the 

completed library are: 

(1) Analyzed source text 

(2) Module descriptor block 

(3) Entry points 

(4) Statement descriptor block 

(5) Symbol table 

(6) Program structure information 

2.3 RXVP OPERATION 

2.3.1 How RXVP is Used 

The program modules to be analyzed by RXVP are assumed to 

compile correctly using a language translator for the FORTRAN dialect 

specified as the one RXVP is installed to accept, and to execute to 

termination for some given set of initial test data. 

RXVP processing is organized into four major phases. The 

first phase is the basic processing of the source code. This phase 

reads the modules, builds the symbol and statement tables, assigns 

node and statement numbers, identifies module structure in terms of 

DD-paths and level-i paths (see Paragraph 2.4), and provides a 

comprehensive static analysis. All this information is then 

assembled into the data base or library. 

The second phase accomplishes the instrumentation of the 

control structure and/or individual statements of each program 

module. 

13 

r'MHlfni-niil"''"'^"'"* ■ ■ - -^— ■ 
■-    ■" -.-■ -.^—. . >■■■■:    I-     -   ..  ■ - 

■--^~'^-"^---'-"'- 



^mmsmt^ .rimmvmmmmMmAMmdmmfm m i J.I.IIIU mm — 

PHASE I 
STEPS: 
BASIC (1) 
STRUCTURAL (2) 
STATIC (8) 

PHASE II 
STEPS: 
INSTRUMENT (3) 
SELFMET (6) 

No 

FORTRAN 
SOURCE CODE 

I 
ANALYZE CODE, PERFORM 
STRUCTURAL ANALYSIS, 
CREATE/UPDATE DATABASE 

INSTRUMENT 
CONTROL_STRUCTURE 

INSTRUMENT 
STATEMENTS 

I 
TESTING STRATEGY GUIDANCE 
& TEST CASE CONSTRUCTION 

ASSISTANCE 

GENERATE NEW 
TEST CASES 

I 
PROGRAM EXECUTION 

I 
ANALYZE TEST COVERAGE 

ANALYZE PROGRAM 
PERFORMANCE 

FULL 
STATIC 

ANALYSIS 

PHASE IV 
STEPS: 
GUIDE (9) 
ASSIST (10) 

PHASE III 
STEPS: 
QUICKLOOK (4) 
ANALYZER (5) 
SMANALYZE (7) 

Yes 

Figure 2.1  RXVP Testing Overview 
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The third phase is the test coverage analysis phase.  It 

provides detailed analyses of control structure and individual 

statement coverage, and reports on the computational behavior of 

program variables. 

Phase four generates reports on overall testing strategy and 

reports to aid in the generation of new test cases. 

Figure 2.1 gives an overview of how RXVP is used in the testing 

of software and lists the STEPs for each phase. 

Each STEP contains execution options, selectable using the RXVP 

command language, to tailor the processing to the user's needs. 

As previously stated, not all of the STEPs (and certainly not 

all of the options) need to be executed in the process of testing a 

software system.  STEPs 1 and 2 must be run to create and update the 

program library.  It is then left to the user to determine the STEPs 

and options that will provide the information and services relevant 

to his individual testing needs. 

Each RXVP run begins with a set of STARTUP commands which 

directs RXVP initialization and ends with the command START.  Next 

come the commands describing the STEPs and options which are to be 

executed.  These commands are followed by the END command, which 

correctly terminates the RXVP run by closing the appropriate files. 

The reader is referred to References [9] and [10] for more details 

regarding use of the RXVP system. 

2.3.2 Modes of Operation 

Operating modes of individual installations of RXVP are 

largely dependent on the facilities and operating procedures of the 

host computer system.  Factors affecting operating modes of an RXVP 

installation include computer memory size, mass storage capacity, 

operating system features, job scheduling algorithm, and facility 

administrative practices. 

In some installations, each RXVP processing step constitutes 

a separate job or job step.   In other installations, RXVP is installed 

15 
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as a system of overlays, with all (or selected) processing steps 

accessible by command In a single job step. 

2.4  FORTRAN PROGRAM ITE1ATI0M 8TMICTUIE MPD1L1BG 

Thf structural analysis performed by RXVP for each program module 

consists of (1) determining all Decision-to-Decision paths (DD-paths) 

within the nodule and (2) combining DD-paths into non-iterative 

sequences called level-i paths. 

A DD-path is a sequence of statements between decision points in 

a module.  It begins with the sensing of the result of some predicate 

evaluation and includes all subsequent statements through the 

evaluation of the next predicate, but not the action taken as a 

result of the evaluation of the second predicate. 

IF(I.EQ.IO) GO TO 100 (10.11) 

IF(N.GT.15) K = 20 

J = I + 20 

(12,13) 

100 CONTINUE 

Figure 2.2  DD-Path Illustration 
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In Figure 2.2, DD-paths 10 and 11 begin with the result of the 

evaluation of the predicate (I.EQ.10).  DD-path 10 represents the 

TRUE result, commencing with the statement GO TO 100, and including the 

CONTINUE and any subsequent statements through the evaluation of the 

next predicate. 

DD-path 11 represents the FALSE result, commencing with the 

statement following the IF-GO TO statement and ending with the 

evaluation of the predicate (N.GT.15). 

DD-path 12 begins with a TRUE result of the evaluation of the 

predicate (N.GT.15) and includes the statement K = 20 as well as 

subsequent statements through the evaluation of the next predicate. 

DD-path 13 commences with a FALSE evaluation of (N.GT.15), continues 

with the statement J = 1 + 20 (omitting K = 20), and terminates with 

the evaluation of the next predicate. Note that DD-paths 12 and 13 

both begin and end at the same points in the module and thus can be 

considered to be parallel. 

A DD-path class is a set of parallel DD-paths (called BROTHERS). 

In Figure 2.2, DD-paths 12 and 13 are parallel (hence, are BROTHERS) 

and are members of the same DD-path class, while DD-paths 10 and 11 

are non-parallel and are not members of the same DD-path class. 

Level-i paths are sequences of DD-paths which comprise non- 

iterative flows in the program module. A level-0 path is a sequence 

of DD-paths that begins at module entry, ends at module exit, and 

does not traverse any decision point more than once.  (See Figure 2.3.) 

A level-1 path is a sequence of DD-paths that begins at a 

decision point on a level-0 path, ends at the same or an earlier 

decision point on the same level-0 path, and does not include any 

DD-paths which are on level-0. , A level-2 path is similarly defined 

relative to level-1 and so on for higher order level-i paths. 

This constructive definition permits iterative flows through the 

program to generally be described in terms of combinations (NB 

not sequences) of level-i paths. 
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LEVLL-0 PATHS 

1- ■2- 5-11 
1- •2- 10 
1- •3- 11 
1- -4- ■11 

LEVEL-1 PATHS 

6- -8 
7- -8 

LEVEL-2 PATHS 

BROTHER DD-PATHS 

3  &  4 
6  &   7 

LEVEL-Q PATH CLASSES 

1-3-11,   1-4-11 
1-2-5-11 
1-2-10 

LEVEL-1  PATH CLASSES 

6-8,   7-8 

LEVEL-2  PATH CLASSES 

•>>    DD-PATHS 

DECISION 
POINTS 

Figure 2.3      Directed Graph of a  Sample Program Structure 
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A level-1 path class, 1=0,1,2,..., is a set of level-i paths, 

each a different sequence of DD-paths from the same collection of 

DD-path classes, that traverse the same set of module decision 

points. 

The structure of a module can be represented by a directed 

graph in which nodes represent decision points in the module and 

edges represent DD-paths.  (Figure 2.3)  See references [7], [8], 

[9], and [10] for a more complete discussion of iteration structure 

modelling. 
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3.0 PROJECT OBJECTIVES AND PROCEDURES 

3.1 OBJECTIVES 

As previously mentioned, the project was designed to accomplish 

two principal objectives: 

(1) Examine the capabilities, features, and utility of a 
currently available automated program verification aid 
(RXVP) from the user's point of view, and 

(2) Provide testing assistance to AFAL and other software 

development projects. 

The examination to be conducted in order to satisfy the 'irst 

objective consisted of two parts.  The first part was a subjective 

evaluation of RXVP based on the experience gained in providing 

testing assistance to the software development projects (i.e., in 

accomplishing the second objective).  This evaluation was to assess 

the benefits derived from the use of RXVP in the testing function, 

the convenience with which RXVP could be applied in the user's 

testing environment, and the adequacy of the features provided for 

accomplishing the testing objectives.  Also to be considered were the 

amount of user familiarization and training required to apply RXVP 

beneficially in the testing process, the adequacy of the user docu- 

mentation supplied with the tool, and the ease of interpreting the 

testing and analysis results. 

The second part of the examination was an objective investigation 

of certain characteristics of the RXVP system.  The goal here was to 

obtain such measurements as the execution time required for various 

RXVP analysis functions, the amount of core memory required for RXVP 

execution, the amount of on-line storage required for RXVP installation 

and RXVP data bases, and the core and execution time expansion factors 

resulting from RXVP instrumentation of a module under test.  Discrep- 

ancies in RXVP performance were also to be identified and investigated 

in this part of the examination. 

Four of the five criteria set forth by Ramamoorthy and Ho [6\ 

for evaluating automated software support tools were addressed by 

this two part examination.  The subjective evaluation principally 
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addressed the criteria of resolution power (i.e., the facility with 

which the tool provides interesting details extracted from the bulk 

of the source code) and ease of use.  The objective part was mainly 

concerned with the criteria of tool validation (i.e., how well the 

tool itself has been qualified) and, to some extent, with transfer- 

ability and flexibility characteristics for adapting to different 

testing environments.  The criterion of generality, reflected in an 

ability to accept different languages, was not addressed, although 

the ability to accept different dialects of the same language 

(FORTRAN) was considered. 

3.2  PROCEDURES 

3.2.1 RXVP Installation 

RXVP was installed at the ASD Computer Science Center on a CDC 

CYBER 74 computer to operate under the SCOPE 3.4 operating system. 

The system was installed as a series of overlays so that all RXVP 

analysis STEPs were accessible (via the command file) from a single 

invocation of the RXVP program.  The usual operating mode was remote 

batch from a terminal located at AFAL.  Installation specifications 

called for RXVP to process FORTRAN programs written in the CDC FORTRAN 

Extended dialect as well as the ANSI X3.9 Standard FORTRAN. 

A modified version of RXVP STEP 4 (QUICKLOOK) was installed on 

a Datacraft 6024/4 computer at AFAL.  The Datacraft 6024/4 is a 

24-bit/word machine with a 750 nanosecond cycle time.  The memory size 

at the time of the RXVP installation was 32K words. Mass storage 

consisted of a single nine-track tape drive and a Datacraft 5208 

Cartridge Disk Drive with a capacity of approximately 2.75 million 

words.  The Datacraft is being used as a system component in an 

avionics software support system being developed by AFAL.  The purpose 

of the installation on the Datacraft was to examine the use of RXVP 

in testing software executing on a machine other than the RXVP host 

machine.  This situation would be common when using a verification 

aid in conjunction with avionics software development and maintenance. 

Considering the characteristics of computers often used as system 
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components, it is highly probable that verification aids used in 

testing software developed for most systems would not be installed on 

the computer where the testing would be accomplished. 

The principal difference between the version of STEP 4 

installed on the Datacraft and the version installed as part of the 

RXVP system on the CYBER 7A was the manner in which the QUICKLOOK 

testing coverage reports were generated.  In the standard version, 

testing coverage reports are generated automatically following each 

invocation of the instrumented program.  Provisions are made for 

repeatedly invoking the instrumented program to permit several test 

data-sets to be processed as a group [10].  This requires the report 

generation and invocation control routines, as well as the execution 

trace data collection routine, to be loaded with the instrumented 

program under test.  To minimize the amount of memory required to 

execute instrumented programs on the Datacraft, only the execution 

trace collection routine was loaded with an instrumented program. 

Execution coverage reports were produced in a subsequent run from 

the trace file recorded during execution of the instrumented program. 

A separate Testing History file containing summaries of coverage 

achieved by each execution was referenced and updated by each report 

generation run.  This file permitted cumulative coverage reports for 

several test data-sets to be produced. 

3.2.2 Non-Host Computer Program Testing 

Two avionics software support programs, written in ANSI X3.9 

FORTRAN to execute on the Datacraft 6024/4, were selected for testing: 

a generalized table-driven assembler (ALAP) and an instruction-level 

computer simulator (ILS).  These programs consist of 1366 FORTRAN 

statements in 24 modules and 1604 FORTRAN statements in 32 modules 

respectively.  The type of testing to be accomplished was of the final 

delivery/acceptance category.  Testing goals were to exercise the 

known principal logic flows using standard test data sets, to measure 

the execution coverage provided by these data sets, then to achieve 

execution coverage of all DD-paths in the program.  The assistance 
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of RXN'P in creating program documentation was also of interest.  The 

basic procedure established for testing each of these programs was as 

follows: 

(1) The program was processed through RXVP STEP 1 (BASIC) and 
STEP 2 (STRUCTURAL) on the CYBER 7A and the RXVP data base 
created was cataloged for future reference. 

(2) Any desired RXVP static analysis reports were produced. 

(3) The program was instrumented for execution coverage data 
collection by RXVP STEP 3 and the instrumented source deck 

was punched. 

CA)  The instrumented source deck was compiled and executed on 
the Datacraft using the standard test data sets. 

(5) Execution coverage reports were generated on the Datacraft 
from the trace file recorded during the previous execution 
and from the Testing History file, the Testing History file 
was updated, and the cumulative execution coverage was 

determined. 

(6) Testing guidance and test case construction assistance 
reports to assist in accessing DD-paths not yet executed 
were obtained from the CYBER 74. 

(7) The instrumented program was again executed on the Data- 
craft with test data derived using the reports produced 

in Step (6). 

(8) Steps (5) through (7) were repeated as necessary. 

ILS was to be tested by CRC to demonstrate expert application 

of RXVP in testing a program with which the tester (i.e., acceptance 

tester) was not intimately familiar.  ALAP was tested by AFAL. 

3.2.3 Program Testing on the RXVP Host Computer 

A collection of programs of various types (e.g.., simulation 

models, language processors, scientific/numerical calculations, etc.) 

was analyzed and tested on the CDC CYBER 74 using RXVP. The types of 

testing ranged from development and debug testing through acceptance 

testing.  Some of these programs were developed by AFAL.  Others 

belonged to organizations invited to participate in the familiari- 

zation workshops and/or other aspects of the project. Programs 

examined during the familiarization workshops were generally 

restricted to 400 statements or less due to the limited amount of time 
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available and the difficulties sometimes encountered in transferring 

programs to the CYBER 74.  Each participant used RXVP however he 

desired in examining his programs.  Most used procedures very similar 

to the one illustrated in Figure 2.1. 

Comments were solicited from the project participants regarding 

their experiences and impressions.  These comments together with the 

conclusions of the AFAL investigators formed the basis of the 

subjective evaluation of RXVP. 

3.2.4  Investigation of RXVP Characteristics 

To measure various characteristics of interest to potential 

users of RXVP, a subset of the programs previously examined was 

selected and subjected to a standardized RXVP processing procedure. 

An attempt was made to select a mix of programs of differing types, 

sizes, structures, and complexities. The objective was not to obtain 

a valid statistical characterization of RXVP performance.  Rather, it 

was to obtain order-of-magnitude indications of the values of certain 

performance factors in RXVP analysis of assorted real programs. 

Each selected program was first compiled and, where possible, 

executed to obtain core and execution time baselines. All measure- 

ments were taken on the CYBER-74.  This was done primarily for two 

reasons:  to reduce the number of additional variables involved when 

two computer systems are used (e.g., different compiler efficiencies, 

different loader characteristics, etc.), and because it was not 

convenient to measure execution time with sufficient precision on the 

Datacraft. The programs designed for the Datacraft could not be 

executed on the CYBER-74 due to word-length dependencies.  No 

execution time measurements were therefore made for these programs. 

After obtaining the baseline measurements, each program was 

processed through RXVP with the following options selected for each 

module in the program: 

(a) Basic analysis 

(b) Structural analysis 

(c) Print module and symbol table 
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(d) Full static analysis 

(e) Print I)I>-Paths (DDP's) and Level-i Path Classes (LIP^s) 

(f) Print the program graph 

(g) Print summary of module characteristics and history of 
analysis results 

(h)  Instrument the module for testing coverage data collection 

(i)  Instrument the module for statement-level execution data 
collection. 

Control statements in the RXVP command file caused RXVP 

execution times to be reported for each command (or closely related 

group of commands) as each module was processed. 

Compilation of the instrumented program decks to determine new 

core requirements was the last st:p in processing each of the unexe- 

cutable programs. 

For each of the executable programs, the deck, (instrumented 

for testing coverage data collection) was compiled and executed under 

control of the RXVP STEP 4 (QUICKLOOK) testing option.  Here, RXVP 

controlled automatic invocations of the instrumented program for each 

test data-set identified, recorded a trace file of the resulting 

executions, and generated individual and summary (cumulative) reports 

for each invocation of the program. 

The next step was RXVP analysis of the execution trace file 

just recorded, and correlation of that data with data in the RXVP data 

base describing the structure and complexity of each module in the 

program. 

The program deck (instrumented for statement-level execution 

data collection) was next compiled and executed to generate a 

statement-level trace file. 

The final step was RXVP analysis of the statement-level trace 

file. 

The combination and order of options selected for the RXVP 

processing of each of the programs was not intended to reflect 

typical use of the system in any real application.  The purpose was 

to obtain the desired performance measurements for a variety of 
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programs.  In some cases, therefore, some of the outputs were 

included for completeness and standardization rather than because they 

contributed important information concerning the particular program 

being processed. 

As a result of the above standard processing, the following 

measurements were obtained using the selected sample programs: 

(1) RXVP execution times (on a per-module basis) for basic 
analysis (STEP 1); full structural analysis (STEP 2) 
with all reports; printing of the analyzed module and its 
symbol table; full static analysis (STEP 8); printing of 
all DDP's, LIP*'s, and the module structure graph; 
printing the summary of module characteristics and 
history of analysis results; instrumenting the module 
for testing coverage data collection; and instrumenting 
the module for statement-level execution data collection. 

(2) RXVP execution times (on a per program basis) for 
QUICKLOOK (STEP 4) report generation, STEP 5 analysis of 
execution coverage trace file, and STEP 7 analysis of 
statement-level trace file. 

(3) Module core expansion factor and program execution time 
expansion factor resulting from both execution coverage 
and statement-level instrumentation. 

(4) The number of words of on-line storage required for the 

RXVP data base. 

The amount of core required to execute RXVP itself and the 

core overhead connected with execution of instrumented programs were 

also determined. 

Finally, a number of questions which arose during the testing 

process were investigated using modules specifically designed for this 

purpose.  (This generally involved isolating and identifying some 

RXVP performance anomaly.) 
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4.0 RESULTS AND CÜNCLUS1ÜNS 

The results obtained from the examinations conducted during the 

project and the conclusions made based on those results are presented 

in this section.  The section is organized following the structure of 

RXVP.  Each RXVP functional STEP is first discussed individually.  The 

function of the STEP is briefly reviewed and any subjective user 

reactions to the STEP are summarized and discussed.  These reactions 

generally reflect the user's evaluation of the STEP in terms of such 

factors as ease of interpreting output format and content, adequacy 

of the features incorporated for accomplishing the intended function, 

and problem areas encountered in using the STEP.  Next follows a 

discussion of the STEP in more objective terms.  Any deficiencies 

and/or discrepancies encountered in using the STEP are presented. 

Here a deficiency is defined to be any system fault or limitation, 

whether documented or not in RXVP publications, which was felt to 

adversely affect system utility.  A discrepancy is defined to be any 

system characteristic in conflict with either RXVP documentation or 

contract requirements. (Several deficiencies/discrepancies were 

corrected by GRC during the course of the project.  Since our 

objective here is,insofar as possible, to discuss the system as it 

currently exists, and since these corrections are presumably 

incorporated into any future installation, these items are not 

explicitly referenced.)  Finally, any appropriate general statistics 

which were found to characterize STEP operations are presented. 

(Statistics collected during standard processing of specific modules 

are reported in the Appendix.) 

Following individual consideration of the RXVP processing STEPs, 

items pertaining not to specific STEPs but to the system as a whole 

are discussed.  The RXVP command language and system documentation are 

two of the topics included in this discussion.  Finally, RXVP 

installation considerations are addressed.  These considerations 

deal not only with physical facilities required, but with system 
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availability to the user and its effect on the manner in which the 

system is used. 

4•l    ^XVP STEP 1 (BASIC PROCESSING) 

The function of STEP 1 is to input a FORTRAN program from the 

RXVP INPUT file and convert it to a series of descriptive tables to be 

stored in a random-access library file for future reference.  These 

tables, the statement descriptor table, the statement table, and the 

symbol table, are the principal outputs from the STEP.  User control 

options specify whether or not program COMMENTS are to be retained 

in the library file, whether the program is to be listed or not, and 

how many modules on the INPUT file are to be processed.  Output to the 

user consists of the module number assigned, some storage and process- 

ing time statistics, a few basic module statistics, the module listing 

(if selected), and certain error messages if difficulty is encountered 

in processing the module. 

BASIC processing is accomplished in two stages.  The first stage 

is a lexical scan of the module wherein statement tokens are isolated 

and identified.  In the second stage, the statements are parsed, 

classified, and node numbers are assigned. 

Since the function of STEP 1 is not primarily user oriented, user 

subjective reaction to the STEP was minimal.  The only comment con- 

cerned the way in which statement tokens are isolated in storing the 

module in the library file.  Blanks inserted to isolate tokens 

sometimes cause subsequent listings of the module to be more difficult 

to read. 

STEP 1, being the FORTRAN "recognizer" for the RXVP system, 

implicitly defines the set of programs which can be processed.  Any 

deficiencies or discrepancies in STEP 1 are therefore significant 

because they limit this set. 

4.1.1 STEP 1 Deficiencies Noted 

(a)  FORTRAN keywords, if not delimited by a special character, 
must be blank delimited.  This constraint is documented in 
the RXVP Reference Manual.  Its impact when analyzing a 
particular program is obviously a function of programming 

30 



I 

style   Its most serious consequence in our experience 
resulted from failure to recognize DO statements of the 
form-  D020J - I,».  Because all vital RXVP functions 
are based on a model of the Iteration control structure 
of the module, failure to recognize such an important 
component of that structure is catastrophic. 

(b)  No statement may contain more than 250 tokens.  This 
constraint is documented in the RXVP Reference Manual 
which suggests breaking the statement into equivalent 
smaller statements.  This was philosophically objectionable 
to all those who encountered the problem, as the general 
opinion was that the tool should accommodate the program 
and not vice-versa.  The most common way in which the 
constraint was violated was in long DATA statements, which 

"  required considerable care to segment correctly. 

(c)  Any EQUIVALENCE statement must follow all COMMON and 
DIMENSION statements.  This constraint is also documented 
in the RXVP Reference Manual.  It imposes an artificial 
restriction on programming style.  (Whether any particular 
restriction was good or bad was not addressed.  The 
criterion used was whether any standards were imposed in 
addition to those required to compile correctly.)  Several 
programmers held the view that the EQUIVALENCE relation 
was clearer when stated in conjunction with the 
declaration/dimensioning of the variables involved. 

(d) Only single expression IF statements are permitted.  This 
constraint is documented in the RXVP Reference Manual. 
For the set of programs used during the project it caused 
few problems, since the IF-IF construct was encountered 

only rarely. 

(e) COMMENTS consisting of more than 65 characters following 
the C (in Column 1 of the card) are truncated to 65 
characters.  COMMENTS are realigned by RXVP so that the 
first non-blank character following the C is placed in 
Column 7.  If the COMMENT was purposely aligned differently 
by the programmer for some reason, this realignment defeats 

his purpose. 

4.1.2 STEP 1 Discrepancies Noted 

(a)  The installation specification called for RXVP to process 
FORTRAN programs written in the CDC FORTRAN Extended 
(Version 4) dialect.  (This dialect is hereafter referred 
to as FTN.)  It was soon determined that the system as 
installed was not compatible with FTN, principally because 
of the instrumentation inserted by STEP 3 (see Section 
4.3.2, Item (a)).  STEP 1 was also found not to recognize 
certain FTN constructs (e.g., the alternate 
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(b) 

(c) 

Cd) 

(e) 

(f) 

(g) 

RETURNS(SI,..,Sn), RETURN i, and READ fn.varlist 
constructs). The installation was, in fact, found to be 
more compatible with the CDC RUN compiler dialect.  Since 
for the purpose of the project either dialect was generally 
satisfactory, a decision was made to adopt RUN as the 
standard dialect in order to proceed most expediently.  No 
attempt was made to systematically determine all the STEP 1 
incompatibilities with either the FTN or RUN dialects. 
Instead, whenever an incompatibility was detected which 
involved a language feature common to both RUN and FTN it 
was recorded.  The decision to adopt the RUN dialect should 
not obscure the fact that RXVP as installed did not 
successfully accommodate the specified FORTRAN dialect. 

Interior blanks are not permitted in any symbol.  The 
occurrence of interior blanks can cause spurious variable 
names to be generated (some even defining variables as 
having numeric names), misinterpretation of FORTRAN 
keywords and spuriously generated keywords, logical and 
relational operators to be unrecognized, and numeric values 
to be split into parts with resultant difficulty in 
recognizing the mode of the constant. 

Multiple statements per card are not permitted. The 
statement separator "$" is not recognized. 

The n.Dm and n.D-m data specifications are not recognized 
as double-precision. They are classified instead as type 
REAL. 

Double-precision constants are truncated to 10 characters. 
The truncated constant cannot then be recognized in many 

cases. 

An array dimensioned in an INTEGER statement and subse- 
quently assigned to COMMON by a COMMON statement is 
identified as a LOCAL rather than COMMON array. 

COMMENTS between continuation cards are not permitted. 
This feature of FTN and RUN is sometimes used by 
programmers to label the data items in a long DATA 
statement. 

(h) The NAMELIST statement is not recognized by the parser. 

4.1.3 STEP 1 Statistics 

RXVP STEP 1 required approximately 69,000 words of CYBER-74 

main memory for execution. This includes provision of the Standard 

Print Commands for printing the library tables produced in STEP 1. 
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t>. 2    RXVF STEP 2 (STRUCTURAL_ANALYS.IS) 

The function of STEP 2 is to perform the analysis of program 

module iteration structure on which the remaining RXVP STEPs are 

based and to add this structural information to the RXVP library file 

established in STEP 1.  The analysis performed by STEP 2 consists of 

(1) identifying all DD-paths in the module, (2) determining the 

module iteration structure in terms of level-i paths, and (3) 

computing a series of complexity measures based on the types of 

statements comprising the module and its iteration structure. 

The module complexity measures are computed using three factors: 

individual statement complexity, DD-path complexity, and level-i path 

complexity.  The complexity of a single statement is found by adding 

a constant value (reflecting the statement type) and the length of any 

expressions in the statement.  Expression length is defined to be 

the number of tokens required to write the expression using reverse 

Polish notation. The sum of all constituent statement complexities 

defines the "total static complexity" of a module. The complexity of 

a DD-path is computed from (1) the sum of the complexities of the 

statements comprising the DD-path and (2) a weighting factor 

WL = 2**L, where L is the (highest) iteration level on which the 

DD-path lies.  The sum of all DD-path complexities is called, natural- 

ly enough, the "total DD-path complexity" of the module. Finally, the 

"total level-i path class complexity" is defined to be the sum of the 

complexities of all level-i path classes in the module.  The complex- 

ity of each level-i path class is found by adding the DD-path complex- 

ities for a representative member of the level-i path class. 

Control options permit the user to specify whether DD-paths alone 

or DD-paths and level-i paths are to be identified, whether complexity 

measures are to be computed, and whether a summary report or one 

detailing the individual statement, DD-path, and level-i path class 

complexities is to be produced. 

According to RXVP documentation [10], the complexity estimates 

made by STEP 2 provide a basis for rationalizing decisions regarding 
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where to next apply testing effort in a testing activity.  The 

hypothesis is that the more complex portions of a software system 

(as identified by the various complexity measures) should receive 

testing priority. 

In our experience, RXVP users paid little attention to the 

complexity measures.  One reason was an inability to correlate the 

complexity measures computed by RXVP with one's own judgmental 

estimate of module complexity.  This, of course, is because the 

number of factors taken into account by an individual in estimating 

the ill-defined property of module complexity is much larger than that 

used in the RXVP algorithms.  The (subjective) weights assigned to the 

various factors are very much a function of the individual's past 

experience, and may be influenced by his knowledge of how the 

particular module is to be used. A few sample remarks are indicative 

of the general lack of regard for the RXVP complexity measures: 

(1)  Subroutine CALLs and FUNCTION invocations are known to 
contribute to the probability of errors in execution due 
to interface problems and side-effects.  Because they 
represent relinquishing control of execution (and hence 
control of future computational environment) by a module, 
they serve to increase the module's "complexity", if 
in that term one includes the interaction of a module with 
its environment (i.e., modules with higher degrees of 
"connectivity" are more "complex" than those without). 
In computing statement complexity, however, RXVP 
algorithms give no more weight to CALLs or FUNCTION 
invocations than to simple assignment statements. 

(2)  The complexity of a level-i path class is computed using 
the "leader" (i.e., lowest-numbered) DD-path from each 
set of parallel UD-paths in the level-i path class. 
Since the "leader" DD-path is not necessarily the most 
complex member of a parallel set, it may be a poor basis 
for determining the complexity of the level-i path class. 
More important, by using a single level-i path (the one 
consisting of "leader" DD-paths) to determine the 
complexity of an entire level-i path class, no distinction 
is made between a level-i path class with a single member 
(no parallel DD-paths) and a level-i path class with 
multiple members (representing alternate flows of execution 

within the class). 
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(3)  What is the justification for weighting the static (total 
statement) complexity of a DD-path with an exponential 
^unction of the iteration level on which the DD-path lies 
in determining DD-path complexity? That is, why does 
nesting a given DD-path one level deeper in an iteration 

structure double its complexity? 

Most RXVP users who considered the complexity measures at all 

regarded them as interesting numbers, uniformly computed for various 

modules, but of little practical significance in program testing. 

While complexity measures are computed in STEP 2, the primary 

function of the STEP is to develop the structural model of the 

selected FORTRAN module.  This model, expressed in terms of DD-paths 

and level-i paths as discussed in Section 2.4. is the basis for the 

remaining RXVP STEPs concerned with module control structure 

instrumentation and testing.  Most users, accustomed to thinking of 

modules in terms of sequential flows of execution, had little 

difficulty understanding the concept of DD-paths. Level-i paths and 

level-i path classes, however, representing a less familiar 

decomposition of the module into levels of iteration, generally 

proved more difficult to understand. 

4.2.1 STEP 2 Deficiencies Noted 

(a) The only deficiency noted in the ability of STEP 2 to 
model the iteration structure of FORTRAN modules is 
attributed not to a problem in STEP 2 per se but in the 
relation between the definition of level-i path and 
potential iteration in the module. According to the 
RXVP Reference Manual [10]. the level-i path concept is 
intended to permit defining flows within a program in 
terras of successive "levels" of iteration. Quoting from 

that source: 

"Level-i paths are non-iterative sequences of 
DD-paths defined in such a way that flows through 
the program (including iteration) can be represented 
as corabinations of level-i paths ... a level-0 
path is a sequence of DD-paths that begins at program 
entry and ends at program exit, and is non-iterative; 
that is. it does not traverse any decision point more 
than once ... A level-1 path is a non-iterative 
sequence of DD-paths. none of them on a level-0 
path, that begins at a decision point of a level-0 
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path and ends at the same or an earlier decision 
point of the same level-0 path." 

A level-i+1 path thus represents a program flow which 
forces a repetition of some decision that lies on a level- 
i path.  Since level-i paths are defined strictly on the 
basis of structural considerations, prohibiting any DD- 
path which is part of a level-i path from being a part of 
a level-i+1 path (by definition) renders the model incapa- 
ble of representing certain types of iteration structures. 

The problem which arises can best be Illustrated by means 
of an example.  Figure 4.1 shows the source code and 
(reduced) program graph for the FORTRAN FUNCTION sub- 
program INDEX, which returns the index of the first 
occurrence of the data item R in an array. A, having N 
entries.  RXVP structural analysis of this module identi- 
fied four level-0 paths, consisting of the DD-path 
sequences 1-2-7, 1-2-6-4, 1-3-4, and 1-3-5-7.  The 
iteration represented by the DD-path sequence 6-5 was not 
identified as a level-1 path (and could not be according 
to the definition).  In this instance, the failure of RXVP 
to reflect a possible iteration was easy to see.  In more 
complex situations (e.g., if DD-paths 6 and 5 were more 
complicated subgraphs and/or the structure resulted from 
control constructs other than the DO statement), such an 
omission might not be as readily apparent. 

Paige [7] points out that for programs in which only the 
three control constructs IF-THEN-ELSE, WHILE-DO, and 
sequential execution (shown to be sufficient by Böhm and 
Jacopini [11] for expressing any algorithm) are used, all 
level-i paths, i>0, are loops corresponding to WHILEs. 
There is, therefore, a direct correspondence between 
level-i paths and iteration levels in "structured" 
programs. While the level-i path concept can still be 
useful for (unstructured) FORTRAN programs, the relation 
between the structural notation and iteration in the 
program is much less direct. 

Every cycle in the structural graph of a module represents 
at least a potential for iterative execution.  If the aim 
is to permit decomposition of the program graph to reflect 
successive "levels" of iteration, it appears that either a 
better means of handling those DD-paths located at the 
intersection of cycles on different "levels" is required, 
or that logical considerations must be included in 
defining level-i paths.  It is interesting to note 
that  in  the example given the level-0 path 1-2-6-4 
is logically impossible.  If notice is taken of 
the fact that executing DD-path 5 is prerequisite 
for executing DD-path 6, the latter DD-path can 
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Node 

[1] FUNCTION INDEX (R.A.N) 
DIMENSION A(l) 

[2,3] IF(N.EQ.O) GO TO 20 
[4] DO 20 1=1,N 
[5.6] IF(A(I).EQ.R) GO TO 30 
[7] 20 CONTINUE 
[8] 1=0 
[9] 30 CONTINUE 
[10] INDEX=I 
[11] RETURN 
[12] END 

(a)    Program Text  and Node Assignments 

l 
i 

©       0 

6 

5 

n 

decision node 

 ♦    DD-path 

w 
(b)  Reduced Program Graph 

Figure 4.1  Array Search Function Example 
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only represent a repetition of the decision at node 5 
and hence must lie on a level-1 path. 

4.2.2 STEP 2 Discrepancies Noted 

No discrepancies in STEP 2 operation were found during the 

proj ect. 

A.2.3  STEP 2 Statistics 

RXVP STEP 2 required approximately 70000io words of CYBER-74 

main memory for execution. This includes provision of the Standard 

Print Commands for printing the library tables produced in STEPs 1 

and 2. 

An approximate upper bound on the number of words, S, of mass 

storage required for the complete RXVP random-access library file for 

most FORTRAN programs is given by: 

S = 2000 + 3000(number of modules) + 60(number of statements). 

4.3 RXVP STEP 3 (TESTING INSTRUMENTATION) 

STEP 3 produces the instrumented version of the FORTRAN modules 

selected to be tested in subsequent STEP 4 execution.  Control 

options enable the user to specify (1) whether or not the instrumented 

version of the module is to be listed, (2) whether or not a compilable 

deck is to be produced, (3) whether all DD-paths or just module ENTRYs 

are to be instrumented, (4) whether or not the standard set of 

instrumentation statistics is to be printed, and (5) the name of the 

trace data generation module, if the RXVP standard module (named 

TSPG871) is not to be used in STEP 4.  STEP 3 manipulates a given 

input module to produce a logically equivalent version with software 

probes (CALLs to a trace data generation module) inserted in each 

DD-path (if that is the option selected). This instrumented version 

of the input module, written in compilable form on the file. LPUNCH, 

is the normal principal output of STEP 3. 

Users were generally satisfied with the features of STEP 3 

(except for four important discrepancies to be discussed) and found it 

easy to use.  One additional capability was suggested to improve the 

convenience of subsequent STEP 4 testing.  Because of the way in which 
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STEP 4 controls the invocation of programs under test and recaptures 

control following their execution, any PROGRAM must be changed to a 

SUBROUTINE before being processed by RKVP if it is to be executed 

under STEP 4 control.  The STEP 3 instrumentor could eliminate this 

requirement by automatically converting a PROGRAM card to a 

SUBROUTINE on the instrumented output file LPUNCH.  In STEP 4 the user 

must supply a trivial driver routine (TSTPRG) to invoke the instru- 

mented program via a SUBROUTINE CALL.  This requirement could also 

easily be eliminated if STEP 3 provided at least the option to 

automatically generate the driver routine on the file LPUNCH, with 

the name of the program to be invoked supplied either in the option 

control statement or by recognition of the PROGRAM card. 

4.3.1 STEP 3 Deficiencies Noted 

No deficiencies were  identified  in  using STEP  3. 

4.3.2 STEP  3  Discrepancies Noted 

(a) The  instrumented modules produced by  STEP  3 could not be 
compiled using the FTN compiler  if  the original module 
contained a DATA statement.     FTN requires any DATA state- 
ment   to  follow all specification  statements.     LOGICAL 
variable declarations generated by  STEP  3  in the  instru- 
mentation process are inserted preceding the  first 
executable  statement  in the module.     If a DATA statement 
is  present  in the original module,   this  causes  a 
compilation error. 

(b) Multiple ENTRY points are  instrumented  incorrectly.     For 
a module having n ENTRYs,  RXVP STEP  2 assigns DD-i-aths  1 
through n  to the ENTRY points  in  the  inverse order  in 
which  they occur in  the module.     That  is,  DD-path n 
represents  the primary module  entry  and DD-path  1 repre- 
sents  the last alternate ENTRY encountered  in reading the 
module  source code.     STEP  3  instrumentation,  however, 
causes  the primary module entry point to report as 
DD-path  1 and the alternate ENTRYs  to report with DD-path 
numbers  reflecting the order  in which  the ENTRYs occur in 
reading the source code  (i.e.,   STEP  3 numbers module ENTRY 
points  inversely  to STEP 2).     As  a result,  execution cover- 
age  reports  do not correctly  reflect  the portions of  the 
module actually executed. 

(c)     A second discrepancy  in  instrumenting multiple-entry 
modules is not related to  the numbering of DD-paths. 
Code  representing an alternate ENTRY,  k,   in a multiple- 
entry module  is often executed as  a result  of an 
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(d) 

(e) 

invocation  through another ENTRY in  the module.     To 
prevent  falsely  reporting an invocation  through  ENTRY k 
in  this situation,   STEP  3  inserts logic  intended  to 
temporarily disable  the probe  in the DD-path assigned  to 
ENTRY k.     This  probe,  however,   is not reenabled prior  to 
exiting  the module.     As a result,  once the module has been 
invoked via any  entry point,   subsequent  invocations  through 
any ENTRY other  than the yrimary entry point will not 
report  execution of   the DP'-path assigned to  the  ENTRY. 

RXVP uses  the  "  character as a means of marking 
significant blanks within FORMAT statements  in  modules 
stored on the  random-access library  file.     When the 
instrumented version of  these modules  is generated, 
STEP  3 restores  the blank in place of  the double-quote. 
This substitution  is  accomplished a little too  zealously, 
however,  with blanks  substituted  for all double-quotes, 
not just  the  ones  originated by RXVP.     As  a result, 
Hollerith  strings which were originally delimited by  the 
" character become unrecognizable and cause errors  in 
compilation. 

The  final STEP  3  discrepancy noted causes no problem with 
any portion of  subsequent  testing activities.     It merely 
reflects an  Innocuous abnormal condition.     If  the  last 
non-blank character  In any RXVP-formatted  source code line 
(i.e.,  having tokens  Isolated  from one another by blanks) 
occurs after Column  65,  a spurious blank CONTINUATION 
card is generated on the file LPUNCH.    This holds  true 
for COMMENTS  as well,   although  the spurious  card  is not a 
blank COMMENT but becomes a  (blank)  continuation of  the 
first non-COMMENT card preceding the COMMENT. 

4.3.3    STEP 3 Statistics 

The primary statistics of interest when instrumenting a program 

for testing are the effects on the program's core requirements and 

execution time.    These effects obviously depend on the nature of the 

program.     The core expansion  factor for a program consisting of many 

short DD-paths is going  to be  greater  than the expansion  factor for a 

program with a few long DD-paths.     The effect on execution  time is 

going to be greater for a program with high rates of  iteration and 

short DD-paths than for a program with long DD-paths and little 

iteration.    Appendix A reports  the effects of  instrumentation on the 

programs used in the investigation of RXVP characteristics. 

Execution time expansion factors ranged from 4.75 to 24.59 with no 
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clearly discernible characteristic value.  The core expansion factors 

for the programs considered were much more consistent, with the 

average expansion of executable core due to STEP 3 instrumentation 

being by a factor of 2.4.  Executable core is that portion of main 

memory occupied by a program exclusive of global and local data 

storage (i.e.. not including I/O buffers, arrays, variables, and 

constant storage). 

STEP 3 required approximately 5150010 words of CYBER-74 memory 

for execution. 

4.4 Wff Wm  4 (QÜICKL00K A^ALYStBI 

The purpose of STEP 4 is to control the execution of a set of 

instrumented modules, to record the trace data generated during the 

execution, and to provide reports outlining execution coverage 

achieved by each invocation of the program under test and cumulatively 

for all invocations.  Unlike the other RXVP STEPs. STEP 4 does not 

require access to the RXVP library file to accomplish its function. 

This makes it possible to test programs executing on a machine other 

than the RXVP host.  Depending on the particular testing situation 

and machine to be used, some "customizing" of STEP 4 may be required 

for most efficient use. Sections 3.2.1 and 3.2.2 discuss the custom 

installation of STEP 4 on a Datacraft 6024/4 computer at AFAL and the 

procedure for using this installation in program testing.  Experience 

with this customized version of STEP 4 will be discussed shortly. 

The standard version of STEP 4 controls the testing activity in 

response to commands supplied by the user in the RXVP command stream 

The program under test operates as an independent entity under control 

of STEP 4. reading its own inputs and producing its own outputs as 

usual. The command options permit the user to specify the instru- 

mented modules for which trace data is to be collected, those 

modules for which Individual execution coverage reports are desired 

and the types of reports to be produced. After module selection and 

report options are set. the user supplies a series of Test and Test- 

Case Identifier cards.  The Test Identifier is used to classify a 
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series of test cases which follows as a set.  It is printed as a 

heading on each page of the reports generated for all test cases in 

the set.  Each Test-Case Identifier serves to define a corresponding 

set of input data on the input file of the program under test.  STEP 

4 invokes the program under test once for each Test-Case Identifier 

found in the RXVP command stream.  The corresponding input data 

supplied must be sufficient to drive the program under test to a 

termination.  The Test-Case Identifier is printed as a subheading 

for the reports generated as a result of the corresponding invocation. 

When the command END SET is encountered in the RXVP command stream, 

the STEP 4 standard commands processor regains control and a new set 

of option settings may be made for subsequent tests. 

In addition to being recorded on an execution trace file, trace 

data is accumulated by STEP 4 in a series of COMMON blocks.  These 

blocks also contain the control option settings and working storage. 

Because their size is predetermined, they set limits on certain 

aspects of the testing activity. These blocks and their default 

constraints are summarized in Table 4.1. In the standard version of 

STEP 4 on the CYBER 74, the user can override the default values by 

providing a BLOCK DATA program defining the desired block storage 

capacity.  This procedure is outlined in the RXVP User and Reference 

Manuals. 

STEP 4 was found to be generally easy to use and the reports 

well formatted, easy to interpret, and adequate for the intended 

function of reflecting execution coverage.  This STEP was, in fact, 

considered to be one of the best developed in the RXVP system.  The 

function provided by STEP 4 was found to be of significant value to 

the testing activity, particularly when conductinc tests in the role 

of acceptance tester. The principal benefit was an accurate record 

of exactly what had been tested by the various test case data-sets. 

While DD-path execution coverage is not in itself a sufficient testing 

objective, or even an adequate measure of the value of a particular 

test case, it does reflect the degree to which the logic has been 
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TABLE 4,1 

DEFAULT STORAGE AREAS 

Block Name 

MODNMS 

NMDDPS 

LSTMOD 

MODSPC 

INDEXS 

ONETST 

DDPTST 

INVTST 

INVCUM 

NOTHIT 

CUMTST 

DDPCUM 

Contents 

Module names 

Number of DD-paths per 
module 

Modules selected for 
single module reports 

Module numbers 

Module data storage 
pointers 

Single test DD-path 
counters 

Module total DD-paths 
executed per test 

Module invocations, 
single test 

Module invocations, 
cumulative 

DD-paths not hit 
working storage 

Cumulative test DD-path 

counters 

Module total DD-paths 
executed cumulative tests 

Default Maximum 

10 modules 

10 modules 

10 modules 

10 modules 

10 modules 

200 total DD-paths 
in all modules 

10 tests (10 modules) 

10 tests (10 modules) 

10 tests (10 modules) 

100 paths not hit 

200 total DD-paths 
in all modules 

10 tests (10 modules) 
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investigated and permits evaluation of the relative efficiencies of 

various data-sets in exercising the program.  In addition to reporting 

testing coverage, the STEP 4 reports in one case led directly to the 

discovery of a program error by disclosing that, although not evident 

from normal output, a program was not executing as presumed. 

4.4.1 STEP 4 Deficiencies Noted 

No deficiencies were identified in using STEP 4. 

4.4.2 STEP 4 Discrepancies Noted 

No discrepancies were discovered in STEP 4 operation. 

4.4.3 STEP 4 Statistics 

Using the default block storage capacities previously discussed, 

STEP 4 required approximately 16500io words of CYBER-74 main memory 

(in addition to that occupied by the instrumented program) for control, 

data collection, and report generation routines and I/O buffers. 

4.4.4 STEP 4'  (Datacraft Testing Analysis) 

While the remarks which follow apply directly only to the 

custom version of STEP 4 installed on the Datacraft 6024/4 computer 

at AFAL, they reflect considerations which are felt to be fairly 

common In testing programs on a relatively small computer system. 

The principal requirement to be satisfied by the version of 

STEP 4 installed on the Datacraft was to minimize the memory overhead 

connected with execution of instrumented code. The programs to be 

tested required a significant percentage of the Datacraft memory for 

execution, even when uninstrumented. When fully instrumented, they 

could not be loaded.  In view of this situation, it was necessary 

to test the programs by instrumenting a subset of the program 

modules, executing the program with a given test case data-set, 

recording the results in a testing HISTORY file, repeating the 

execution of the program with a different subset of modules 

instrumented, and combining the results with the data already on 

the HISTORY file.  (For one of the programs tested, ten such 
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executions were required for each test case data-set to provide 

information equivalent to one fully instrumented execution.)  Because 

of this mode of operation, the multiple invocation feature of STEP 4 

was discarded as superfluous in STEP 4'.  The STEP was partitioned 

into an execution/trace-data-generation step and a report-generation/ 

HISTORY-file-update step.  A modified version of the trace data 

generation module, TSPG87, and a trivial driver program were the only 

additional components loaded for execution with the instrumented code. 

The trace data was not accumulated in memory as in the standard 

STEP 4, but only recorded on the trace file.  In this manner, the 

core overhead associated with execution of the instrumented code was 

reduced to less than 1000 _ 24-bit words. 

Report-generation/HISTORY-file update ran as a separate job 

using the trace and HISTORY files.  The reports generated were the 

same as those provided by the standard STEP 4.  Control options were 

also essentially the same, although the command format was different. 

In addition, options dealing with the use and update of the HISTORY 

file were provided.  The COMMON blocks previously discussed for 

accumulating trace data and setting control options were part of the 

report-generation portion of STEP 4'. Because the programs under 

test (even when partially instrumented) exceeded the default 

constraints, block storage had to be increased. The Datacraft 

loader, however, requires that all modules referencing a COMMON 

block specify the same length for the block.  The BLOCK DATA program 

method for overriding default storage values was therefore not 

directly applicable, although a rather devious means of using it was 

devised. 

Another problem was encountered in recording the trace file. 

The standard trace data generation routine, TSPG871, writes a 

formatted, unblocked record on the trace file each time it is 

called by a software probe in the instrumented code. Using this 

method of recording trace data, a 2400 foot reel of magnetic tape 

could hold approximately 30000 trace records. The largest working 
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storage area available on the Datacraft disk could hold even less. 

For the programs under test, with only a portion of the modules 

instrumented, trace files consisting of up to 650000 records were 

not uncommon with certain test case data-sets.  (This was true even 

when repeated records caused by iteration on a single DD-path were 

eliminated.)  The trace data generation module was rewritten to 

block and buffer the data to the trace file. As a result, a reel of 

tape was capable of holding over 750000 trace records and total 

execution time was greatly reduced. 

After some experience with the testing procedure of combining 

the results of several partially instrumented executions, the need 

for a HISTORY file editing and summary capability was recognized. 

A program providing the desired features was written, improving the 

convenience and flexibility of the testing process.  In summary, 

STEP 4' testing activities on the Datacraft computer were more of a 

problem than corresponding activities on the RXVP host machine due 

primarily to two difficulties: 

(1) a much less efficient testing procedure made necessary 
by core limitations not experienced on the larger 

machine, and 

(2) an inability to record the trace file from test 
executions in the original manner on the mass storage 

devices available. 

If the system is to be used in testing software executing on other 

than the RXVP host machine, some detailed knowledge of the internal 

operation of STEP 4 is probably necessary to permit tailoring the 

STEP to meet various testing situations. 

4.5 RXVP STEP 5 (DETAILED TESTING ANALYZER) 

The function of STEP 5 is to provide more detailed information 

regarding testing coverage by combining the data recorded on the 

trace file as a result of an instrumented test execution in STEP 4 

with data in the RXVP library file reflecting the structure and 

complexity estimates of the program under test. Control options 

permit the user to define the set of STEP 5 reports to be produced 

and the modules to be included in the coverage analysis. 
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The new information provided by STEP 5 consists principally of 

describing execution coverage in terms of percentages of module 

statements and complexity exercised, and identifying the correspond- 

ence between the DD-paths executed and level-i path classes in the 

module.  In addition, STEP 5 provides the capabilities to print the 

execution trace file, yielding a record of DD-paths traversed in 

execution order, and to present this same information in terms of a 

trace of the order in which level-i paths were completed by the flow 

of execution.  Using the program graph presented in Figure 2.3 as an 

example, and numbering level-i path classes in the order in which 

they are listed in the upper-right portion of that Figure, an 

execution flow represented by the DD-path sequence 1-4-7-9-8-11 

would be reported as a level-i path class trace in the order 5-4-1. 

Because the level-i path (class) concept permits describing 

execution flows in terms of combinations rather than sequences of 

level-i paths (or classes), this latter feature was not considered 

to be particularly valuable as a trace of program execution, 

particularly in modules having complicated structures and several 

Iteration levels. Considered as a report of the combination of 

level-i path classes exercised, the same information could be 

presented in a much more readable form. 

Only two of the six available STEP 5 reports were considered 

significant.  One was the DD-path trace previously mentioned.  The 

other was a cross-reference table displaying the membership of each 

DD-path In the various level-i path classes, and whether or not that 

DD-path had been exercised. Of marginal interest was a summary 

report reflecting, among other things, the number and percentage of 

statements exercised. The other reports were considered to be 

either of little value to the testing activity or redundant in view 

of the STEP 4 reports. 

The thing most users wanted to see, following an examination 

of the STEP 4 reports, was the set of code comprising the DD-paths 

not exercised.  To get this information the ASSIST,PROPERTIES, 
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DUPATHS,  conunand of STEP 10 was used.  STEP 10, in fact, often 

became the de facto "detailed testing analyzer." This preference was 

a reflection of the desire to see testing results in terms of the 

program itself rather than in terms of an abstraction of the program 

(i.e., the DD-path structural model).  The STEP 10 Properties Report 

was ideal for this purpose, with the exception of the composite 

predicate portion of the report which was somewhat inappropriate when 

parallel DD-paths were included in the set not exercised.  Because of 

this experience, it is felt that the capability to produce some 

version of this report automatically, selecting DD-paths to be 

included based on the trace file data, would improve the utility of 

STEP 5 in the testing activity. 

4.5.1 STEP 5 Deficiencies Noted 

No deficiencies (other than that previously implied by the 

suggested improvement) were noted in using STEP 5. 

4.5.2 STEP 5 Discrepancies Noted 

(a) RXVP documentation and STEP 5 report headings indicate 
that the data presented as a result of the STEP 5 commands 
ANALYZER,LIP TRACE and ANALYZER,TABLE is in terms of 
level-i paths.  In fact, the data is in terms of level-i 

path classes. 

4.5.3 STEP 5 Statistics 

STEP 5 required approximately 69500 words of CYBER-74 memory 

for execution (if the Standard Print Commands were included). 

A • 6 agyP fftSS  6 {SlEL.F-tiiTE^Il^ IHSTBMMENTAf X0IO 

STEP 6 provides the capability to instrument selected modules to 

collect data reflecting the behavior or performance of each individual 

statement during execution of the module.  The output of the S'xEP is 

the instrumented version of the selected module, which is written in 

compilable form on the file LPUNCH, together with a report giving the 

options in effect for the instrumentation.  User options permit 

specifying the name of the file on which the instrumented code is to 

be written, the name of the file on which the execution data 
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generated by the instrumented code is to be recorded (default name 

LTEST), and whether or not statistics on the values of variables 

resulting from execution of ASSIGNMENT statements are to be recorded. 

Unlike STEP 4 execution of programs instrumented at the DD-path 

level, no reports are generated in conjunction with the execution of 

programs instrumented at the statement level.  Reports are generated 

instead by STEP 7 from the data file recorded during the instrumented 

execution.  Only the data recording routines called by the statement- 

level software probes and (because STEP 4 requires PROGRAMS to be 

converted to SUBROUTINES prior to being processed by RXVP) a trivial 

driver routine need to be loaded with the inscrumented code for 

execution. 

If STEP 3 were capable of automatically converting PROGRAMS to 

SUBROUTINES during DD-path level instrumentation as suggested in 

Section 4.3, the requirement for a driver routine to execute 

statement-level instrumented code would be eliminated. 

4.6.1 STEP 6 Deficiencies Noted 

No deficiencies were identified in using STEP 6. 

4.6.2 STEP 6 Discrepancies Noted 

(a)  The instrumentation of IF statements, as presently 
accomplished, may result in an instrumented version of 
the module which is not logically equivalent to the 
original module.  Specifically, if the predicate of an 
IF statement contains a FUNCTION invocation, and if the 
FUNCTION has memory (i.e., if the value returned is a 
function of previous as well as the current invocation), 
then the instrumented code is not logically equivalent to 
the original module because the instrumentation produces 

extra invocations of the FUNCTION. 

(b) Double-quote marks in FORMAT statements are replaced by 
blanks, just as discussed in Item (d) of Section 4.3.2, 
resulting in unrecognizable Hollerith strings that were 
originally delimited by the " character. 

(c) As in Item (e) of Section 4.3.2, if the last non-blank 
character in any RXVP-formatted source statement (other 
than COMMENTS) occurs after Column 65, a spurious (blank) 
CONTINUATION card is generated.  RXVP-formatted COMMENTS, 
however, are truncated to Column 71 with no continuation. 
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4.6.3 STEP 6 Statistics 

STEP 6 required approximately 47000^0 words of CYBER-74 memory 

for execution.  Executable core expansion factors due to statement- 

level instrumentation ranged from 2.8 to 4.9 for the set of programs 

considered, with the average module expansion factor being about 4.4. 

Execution time expansion factors ranged from 8.1 to 27.9. 

4.7  RXVP STEP 7 (SELF-METERING ANALYSIS) 

STEP 7 produces the statement-level execution report describing 

the execution of modules previously instrumented by STEP 6.  The 

trace file recorded during the instrumented execution and module 

information from the RXVP library file are used in generating the 

report.  The report takes the form of an annotated listing of the 

module, with the following information supplied: 

(1) Statement number 

(2) Statement text 

(3) Statement execution count 

(4) Count (and percentage) of TRUE evaluations of logical 
IF-statement predicates, and the result of the final 
evaluation 

(5) Count of alternate branches taken from arithmetic IF- 
statements 

(6) Number of times the module was invoked, the number of 
executable statements it contains, and the number actually 
executed. 

If the module was instrumented appropriately in STEP 6, the 

initial, final, minimum, maximum, and average values of variables 

resulting from execution of ASSIGNMENT statements may also be 

reported. A report may be generated for every invocation of the 

module, to summarize the results of all invocations, or both. User 

control options also permit specifying the modules for which the 

reports are to be generated. 

STEP 7 was found to be easy to use and the reports, as intended, 

to provide more detailed computational information than was available 

from STEP 4 and 5 reports.  Because of this fact, STEPs 6 and 7 are 
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far more appropriate for program development and debug testing than 

are STEPs 3, 4, and 5. 

With regard to using STEPs 6 and 7 in these early program testing 

activities, there was one suggested additional capability within the 

present context of the STEPs:  the ability to selectively extract 

trace file information to produce a detailed record of the activities 

of specified statements during execution. 

4.7.1 STEP 7 Deficiencies Noted 

No deficiencies were noted in using STEP 7. 

4.7.2 STEP 7 Discrepancies Noted 

No discrepancies were found in STEP 7 performance. 

4.7.3 STEP 7 Statistics 

STEP 7 required approximately ASOOOiQ words of CYBER-74 memory 

for execution. 

4. 8 RXVP STEP 8 (STATIC ANALYSIS) 

STEP 8 provides a collection of procedures for the static 

analysis of module code and produces a series of reports useful in 

program development, testing, and documentation activities.  The 

reports are generated from the RXVP library file produced in STEP 1. 

(The structural information added by STEP 2 is not required.) 

STEP 8 services can be classified into three functional categories: 

(1) extended intra-module compiler checks/reports, (2) isolation of 

selected functional classes of data and statements, and (3) inter- 

module invocation checks/reports. 

Included in the first category are:  an enumeration of statement 

types used in the module, a variable cross-reference table indicating 

how and where the variables are used, a check of all array references 

for dimensional conformance with the array declaration, a check of all 

expressions for mode conflicts, a report describing the formal 

parameters of the module, and a list of all variables not explicitly 

typed in the module declarations. The second category consists of: 

identification of all local variables and constants, identification 
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of the module "communication space" (i.e., the variables appearing 

in the argument list and COMMON variables used), identification 

of all constants and variables used in predicates, identification 

of the "local memory" (defined to be those local variables used in 

predicates) of the module, identification of all product expressions, 

identification of all denominator expressions, a list of all READ 

statements with the associated FORMAT statements, and an outline of 

all DO-statement nests.  The third category provides a check of all 

module invocations to determine that actual and formal parameters 

conform in number, type, and dimension.  It also can provide, in 

either tabular or graphical format, the invocation tree rooted at a 

selected module.  These checks/reports can be selected by the user 

either individually or in predefined groups. 

The services provided by STEP 8 were useful in examining 

individual modules and particularly in determining the relations among 

several modules.  With further refinement and enhancement, the 

variety of STEP 8 functions was felt to have even greater potential 

benefit. 

One area of suggested improvement deals with determining module 

connectivity.  The present module connectivity analysis is 

distributed over three STEP 8 functions:  invocation tree generation, 

communication space definition, and invocation parameter conformance 

checks.  For systems having large numbers of modules and extensive 

COMMON data, a report reflecting module connectivity as a function 

of data usage as well as control flow would be of considerable use in 

evaluating the effect of changes within a module on the rest of the 

system.  The information necessary to produce this report is 

presently available in the RXVP library file, but a new STEP 8 

function would be required to correlate it appropriately. A reverse 

invocation (called-by) tree would similarly be useful when changes 

in a module (e.g., number or function of parameters) make it 

necessary to identify all users of the module. 

An additional suggested static check, often not difficult to 

accomplish, is for potential use of an undefined DO-loop index 
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in the communication space of invoking modules, although 
they represent a means by which the invoking module 
acquires external data.  Variables involved in I/O 
operations are also excluded from the module communica- 
tion space.  Although FUNCTION names and I/O variables 
represent different classes of data communication than 
COMMON variables and formal parameters, including them 
in separate sections of the communication space report 
would provide a more complete picture of the module's 
connectivity with the external data environment. 

(d) Ir the variable cross-reference report, array subscript 
variables are given the inappropriate usage tag 

"READ/PASS". 

(e) Variables used in decision predicates are also tagged 
"READ/PASS" in the cross-reference report. A separate 
report (produced by the command STATIC,PREDICATES) 
correctly lists all variables used in predicates. The 
cross-reference report should reflect a consistent 

usage for these variables. 

(f) There is, apparently, an undocumented limit on the number 
of variables which can be reported in the variable 
cross-reference report. A module containing 521 symbols 
caused RXVP to abort due to excessive data base accession 
errors when the cross-reference report was requested. 
No attempt was made to determine this limit, although it 
is known to be greater than 198 symbols. 

4.8.2 STEP 8 Discrepancies Noted 

(a) A DO-loop index variable previously used as the index 
to another loop is given the usage tag "READ/PASS" in 
the second DO statement rather than the correct tag, 

"DO-INDEX". 

(b) When a FUNCTION uses the variable having the FUNCTION 
name as an argument in the parameter list for the 
invocation of another module (e.g., when passing the 
value the FUNCTION attained on the previous invocation), 
the invocation check report produced by the command 
STATIC,CALL CHECK reports the argument as having 
unknown form even though the mode of the FUNCTION is 

known. 

(c) When an array element is passed as an argument in a 
parameter list, a parameter mode error is generated in 
the invocation check report, even if the mode of the 
array conforms with the mode of the corresponding formal 

parameter in the called module. 
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(d) Alternate ENTRY pointa are reported as unknown in the 
invocation check and invocation tree reports, even 
though identified as type ENTRY in the symbol table for 
the multiple-entry module. 

(e) COMMON variables used in PROGRAM modules are not reported 
in the communication space report for the PROGRAM. 
(Recall that a PROGRAM need be changed to a SUBROUTINE 
only if it is to be executed under STEP 4 control.) 

(f) Assignment of a value to a previously unused variable by 
an IF-ASSIGNMENT statement causes a "USE-BEFORE-SET" 
warning flag in the cross-reference report. 

(g) A variable set by an ASSIGN statement is given the usage 
tag "READ/PASS" and, if previously unused, causes a 
"USE-BEFORE-SET" warning flag in the cross-reference 

report. 

(h)  In the enumeration section of the READ statement report, 
the number of conditional READ statements is included in 
the value reported as the number of regular READ state- 

ments. 

(i) An integer variable used as a FILENAME or as the object 
of an ASSIGN statement (i.e., receiving the statement 
label), then subsequently used in arithmetic computations, 
is defined twice in the module symbol table and cross- 
reference report.  Explicit typing information is ignored 
in reporting the arithmetic use of the variable.  (The 
discrepancy here is probably in STEP 1.  The results only 
manifest themselves as indicated In STEP 8.) 

4.8.3 STEP 8 Statistics 

STEP 8 required approximately 73000io words of CYBER-74 memory 

for execution.  This includes provision of the Standard Print 

Commands for printing the RXVP library tables. 

4.9 RXVP STEP 9 _ (TfSTING GUIMNCS) 

STEP 9 provides a series of reports, based on the iteration 

structure of a module, intended to outline a strategy for achieving 

the testing goal of 100% DD-path execution coverage.  The thesis on 

which the strategy is based is that DD-paths residing at the highest 

possible iteration levels are the most efficient targets of testing 

activities because "generating a testcase to reach as deeply as 

possible into the iteration structure will assure that as much 

collateral testing as possible is achieved" [12].  The principal 
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report depicting this strategy (produced by the STEP 9 command 

GUIDE,TESTGUIDE) consists of an expansion of the level-i path class 

tree for the module.  This tree represents the ancestry relationships 

among the different level-i and level-i+1 path classes (i = 0,1,2,...). 

The level-i path class tree for the program structure of Figure 2.3 

is shown in Figure 4.2. The execution resulting from any invocation 

of the module can be described by a traversal of the tree from the 

root to some terminal branch.  The terminal branch represents the 

highest iteration level-i path class involved in the execution. 

The TERMINAL BRANCH TEST GUIDE report consists of a series of 

"Testcase Set" descriptions, one for each terminal branch lavel-i 

path class in the tree.  Each description reflects the possible 

structural combinations of path classes of different levels which 

provide access f the specific terminal branch path class (i.e., the 

different possible paths through the tree from the root to the 

terminal branch path class).  By selecting one of these possible 

combinations and supplying testcase data resulting in its execution, 

the user is able to access the DD-paths of the "deepest" iteration 

level-i path classes in the module (i.e., the terminal branches of 

the level-i path class tree). Assistance in constructing appropriate 

testcase data to force execution of the selected tree traversal is 

provided by STEP 10 reports. 

Other STEP 9 reports provide additional information about the 

level-i path classes in a module, the properties of DD-paths, and the 

relationships between DD-paths and their successors.  To remain 

within the core limits established locally for daytime operations, 

only the TESTGUIDE report was included in the version of STEP 9 

installed on the CYBER-74. Most of the information available in the 

other STEP 9 reports was available in slightly different format in 

STEP 10 reports. 

The utility of the guidance provided and how it should be applied 

were not obvious to most users of the system. STEP 9 was probably 

the least well received portion of RXVP, both in terms of 
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module entry 

{1-3-11,1-A-ll}  {1-2-5-11}      {1-2-10}    level-0 path classes 

{9} 

{6-8,7-8}     {6-8,7-8} 

{9} 

level-1 path classes 

level-2 path classes 

i Figure 4.2  Level-i Path Class Tree Example 

57 



.^^.■jJHutaiiiiLw^ 
wrw^T:-. .  i. .,,i..j,jBi.:,.*jftj«aH#Sap.j 

arn-ifriiT   TIIM 

I! 

understanding the information presented in the output and in terms 

of testing strategy adopted (i.e., accessing the highest iteration 

levels as a means of achieving testcase efficiency).  The RXVP User's 

Guide [9] describes STEP 9 as "a sophisticated tool" affording 

"substantial guidance in the testing process" in the following 

instances: 

(1) when the number of untested DD-paths is so large that an 
organized approach to exhaustive testing is not apparent, or 

(2) when initial testcase data is not available or cannot be 
applied because either the input requirements of the soft- 
ware system are not known or the iteration structure is so 
complex that appropriate inputs cannot be readily developed. 

Neither of these instances arose in our experiences using the RXVP 

system in testing activities.  An initial set of testcase data was 

always available from the program developer and we were always able to 

devise tests of the unexecuted portions of a module based principally 

on functional rather than structural considerations.  The properties 

of the unexecuted DD-paths (available via STEP 10 reports), rather 

than their locations in the iteration structure, were most helpful in 

this regard.  It was generally felt that if it were necessary to rely 

principally on structural information to devise tests of a module, it 

might be more difficult to assess the functional correctness of module 

activity and computational results in response to the testcase. 

The principal benefit of iteration structure information in 

devising testcases derived, in our experience, from the correspondence 

often found between level-0 path classes and different functional 

flows through the module.  Except for this aspect, we do not feel that 

the full utility claimed for the level-i path iteration structure 

model in developing testing strategy was demonstrated by our experi- 

ence. This, of course, could be attributed to the particular 

testing activities conducted, the level of sophistication of the 

users of the tool, the model itself, or some combination of the three. 

4.9.1 STEP 9 Deficiencies Noted 

No specific deficiencies were identified in our use of STEP 9. 
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4.9.2 STEP 9 Discrepancies Noted 

(^     In the section of the TESTCUIDE report which describes 
(a)  terminal branch level-0 path Masses the number reported 

as the "TITAL (sic) NUMBER OF DISTINCT LEVEL-0 PATH 
?L SES- is actually the number of distinct level-0 paths 
in the set of terminal branch level-0 path classes. 

4.9.3 STEP 9 Statistics 

With only the TERMINAL BRANCH TESTGUIDE report option 

available, but including the universal Standard Print Commands, STEP 9 

required approximately 58000 words of CYBER-74 memory for execution. 

4 10 RXYP_STEP 10 (TEST^ASE.ASSISTANCEJ 

Unlike the other RXVP STEPs. STEP 10 is not intended to provide 

general reports reflecting characteristics of entire modules or groups 

of modules.  It is. rather, designed to assist in detailed examina- 

tions of selected portions of the DD-path structure of a module. 

Specifically, the information provided is intended to assist in the 

construction of test case data to access unexercised DD-paths within 

the module. 
STEP 10 reports are produced in response to commands of the 

form:  ASSIST.<option>.<construction-specification>.  <option> specifies 

the form the report is to take.  <construction-specification> defines 

the set or execution sequence of DD-paths to be included in the report. 

The two most commonly used <option> specifications are PICTURE, 

which results in a stylized directed graph representing the DD-paths 

defined by <construction-specification>. and PROPERTIES, which produces 

a report consisting of four parts: 

(1) a list of the set or sequence of DD-paths defined by 
<construction-specification> 

(2) the composite predicate, expressed in "«• «J^^« 
variables, which must be satisfied for the defined DD path 

sequence to be executed 

(%\     the execution order sequence of statements from the module 
(3) source tLt which comprises the defined »D-path sequence, 

together with the decision outcomes which must result 
the indicated execution sequence is to be realized 
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(A)  A detailed analysis of variable usage along the defined 
DD-path sequence. 

There are two categories of <construction-specification>. 

One category defines a set of DD-paths having some specific property 

(e.g., those DD-paths comprising the level-0 paths in the module). 

The other category defines a DD-path execution sequence which includes 

a specific DD-path or level-i path class.  It is this category of 

<construction-specification> which is most often used to examine the 

various means of accessing untested portions of a module and to define 

the appropriate testcase data to force the desired execution. 

In defining the set/sequence to be included in the report, the 

"leader" DD-path of a DD-path class is normally selected to represent 

the class.  Additional STEP 10 commands permit the user to specify 

that all DD-paths in a DD-path class are to be reported, or that a 

member of the class other than the "leader" is to be selected. 

The command ASSIST,PICTURE,ALL DDPATHS, producing a directed 

graph of the entire module, was found to be extremely useful in 

understanding the overall structure of the module and in planning 

testing strategies to access untested portions of the module. 

The command ASSIST.PROPERTIES,DDPATHS,<n,m1,m2,...mn>, as 

discussed in Section A.5, was found to be an excellent method of 

examining the characteristics of the n untested DD-paths m1,m2,...mn 

following a STEP A test execution. 

Because the process of selecting an appropriate sequence of 

execution to reach some untested portion of a module consists largely 

of examining the various alternatives presented by STEP 10, we believe 

that the utility of this STEP would be enhanced by an installation 

permitting its use in an interactive manner.  This, unfortunately, 

was not the case with our installation, but it is understood that such 

interactive installations do exist. 

The principal user dissatisfaction with STEP 10 resulted from 

the manner in which execution sequences for reaching specified module 

segments are generated. These sequences are based only on structural 

considerations, with no regard given to logical reachability. 
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including logical considerations would significantly enhance the 

utility of STEP 10.  Depending on the extent to which it is carried, 

it also might represent a considerable improvement task in terms of 

effort.  The seed of such an effort may be found in the work on 

backtracking formula reduction reported by Miller and Melton [13]. 

4.10.1  STEP 10 Deficiencies Noted 

(a) The purpose of STEP 10 is to offer services "providing 
assistance in the generation of testcases" [9].  The 
fundamental resource for accomplishing this function 
is the PROPERTIES report option. While explicitly 
stating every predicate to be satisfied internal to a 
module is of interest in many situations, it is 
generally not as useful in generating testcases as 
information in terms of appropriate states of the module 
input space.  That is, the present level of information 
intended to assist in testcase construction is too low 
for that purpose. More backtracking to attempt to define 
an appropriate set of input conditions is required. 
The developments referenced by Miller and Melton [13] 
are obviously designed to address this deficiency, 

(b) When investigating the properties of different sets of 
DD-paths from several modules (e.g., the untested 
DD-paths following a test execution), it is sometimes 
not immediately obvious which module is being considered 
in an individual report.  In this case, it would be 
helpful to place the module name in the heading of the 
ASSIST,PROPERTIES,<construction-specification> report. 

4.10.2 STEP 10 Discrepancies Noted 

(a)  In listing the properties of DD-path sets/sequences (via 
the ASSIST,PROPERTIES,<construction-specification> 

command) for several modules (selected by 
MODULE - <modname>), if a composite predicate is 
truncated in any report due to excessive length, the 
composite predicates in all subsequent reports are 
truncated, regardless of their lengths. 

4.10.3 STEP 10 Statistics 

STEP 10 required approximately 62000x0 words of CYBER-74 

memory for execution. 
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4.11  RKVP SYSTEM LEVEL CONSIDERATIONS 

This section discusses certain system-level aspects of RXVP and 

its use.  The first topic to be considered is the familiarization and 

training required to permit beneficial use of the system. A potential 

user has three major questions to be answered: 

(1) What services does RXVP provide? 

(2) How do I acquire those services? 

(3) How do I best use those services in testing activities? 

There are three sources of answers to these questions:  RXVP user 

documentation, formal instruction, and experience.  User documentation 

consists of a User's Guide [9] and a Reference Manual [10].  The User's 

Guide describes the ten RXVP STEPs and generally how they are intended 

to be used in support of testing activities.  It is not a comprehensive 

description of RXVP capabilities, in that only the principal options 

of each STEP are presented.  The User's Guide adopts a "cookbook" 

approach in describing how to access the RXVP services discussed.  The 

Reference Manual provides a catalog of RXVP capabilities and a more 

complete discussion of the RXVP command language and its use in 

invoking the desired functions.  It is not, however, oriented toward 

a discussion of the application of RXVP in testing activities.  The 

two documents are thus complementary, with the User's Guide 

introducing the overall scheme of RXVP use and the Reference Manual 

providing the mechanics. As is, perhaps, to be expected with the 

first release of any document, there are several typographical and 

compositional errors in the User's Guide and Reference Manual.  Some 

of these are described in Section 4.11.2.  Taken together, the User's 

Guide and Reference Manual were considered to do an adequate job of 

answering the first of the questions posed above. 

The RXVP command language was judged to be easy to learn and 

convenient to use. The information contained in the Reference Manual 

provides sufficient tutelage to permit a user to apply the language 

in directing RXVP functions. The Reference Manual, when supplemented 

with installation-specific documentation regarding deck structure. 
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file access, etc., provides the necessary answers to the second 

question. 

The amount of training required to answer the last question 

varies with the type of RXVP services being considered.  Based on our 

experiences, we have classified the major RXVP functions into three 

categories, according to the type of user and minimum degree of train- 

ing we estimate they imply in order to make effective use of the 

information they provide: 

(1) 

(2) 

(3) 

Category I services consist of STEP 1, STEP 2 (considered 
as a library construction activity only), STEP 6, STEP 7, 
STEP 8, and the Standard Print Commands for printing the 
module, the module symbol table, and the entry point table. 
A casual user, self-trained by reading the  User's Guide, 
Reference Manual, and installation-specific documentation, 
could probably make effective use of these resources. 

Category II services consist of all the above plus STEP 2 
(including DD-path information), STEP 3, STEP 4 (on the 
host machine only), STEP 5 (DD-path reports only), and 
the Standard Print Command for producing the DD-path 
report. A casual user, after studying the user 
documentation and receiving about 8 to 12 hours of formal 
training in directed graph structural modelling and its 
use in DD-path testing, would probably be in a position to 
use Category II services effectively. 

Category III services include the above, as well as STEP 2 
(complete with level-i path and complexity reports), 
STEP 5 (all reports), STEP 9, STEP 10, and the Standard 
Print Commands for producing the module Summary and History 
reports and level-i path (class) report. To make effective 
use of this information, a total of around 20 to 28 hours 
of initial formal training is probably required. This 
training would include complexity measure computation, 
iteration structure modelling, and their applications in 
program testing strategies. Our experience indicates that 
rather frequent use of RXVP is also required to remain 
proficient in the use of these concepts. 

In each of these categories, efficiency in using the RXVP services 

will obviously improve with experience. 

As reported in Section A.A.4, we feel that application of RXVP 

in testing activities on other than the RXVP host machine probably 

requires additional familiarization/training in the internal operations 

of STEP 4. This is particularly true if the machine on which the 
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needed  in support of  testing activities.     The  impact of having  to 

create a new library for  each separate RXVP run was particularly 

detrimental  in the area of  test case assistance  (STEP 10),  which,   as 

previously discussed,   is essentially  interactive in nature.     In  a 

more permanent  installation,   some  accommodation could undoubtedly be 

reached which would alleviate  the situation just described.     We 

mention it here simply  to  illustrate  the  importance of  considering 

the  local operating environment when assessing the potential utility 

of RXVP. 
The following two sections identify deficiencies and 

discrepancies found in RXVP functions at the system level and in the 

user documentation. 

4.11.1 System-Level Deficiencies 

(a) When several reports are generated for each of several 
modules during a single RXVP execution, locating a 
specific report for a specific module in the resultant 
output is often not convenient.  (RXVP output tends to be 
voluminous.)  Since RXVP is intended for use in examining 
large software systems, this is a disadvantage which 
should be corrected.  A Table of Contents at the 
beginning of the output generated by each execution would 
be a most useful addition.  Considering the manner in 
which the output print file is produced, generating such 
a Table should not be overly difficult. 

(b) The System Wrap-Up Summary, produced at the end of each 
RXVP execution, reports certain statistics describing the 
modules contained in the RXVP library file (e.g., number 
of statements, number of symbols, number of DD-paths, 
etc.). A total value over all modules in the library is 
generated for some of these individual statistics. The 
total number of DD-paths in all modules of a program 
(which, generally speaking, constitutes a library file) 
would make it easier to determine when the STEP 4 default 
storage capacities need to be overridden in testing the 

instrumented program. 

4.11.2 System-Level Discrepancies 

(a) The heading for the report generated by the Standard 
Print Command PRINT,LIP describes the contents of the 
report as the LEVEL-I PATHS FOR MODULE <modnarae>. 
What is, in fact, reported is a collection of ^ 
representative level-i paths (composed of "leader 
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DD-paths), one from each level-i path class in the 
■■ module.  The RXVP Reference Manual describes this report 

as "...a detailed listing of the RXVP information 
describing each Level-i Path Class identified for the 
current module." This is also misleading, as the entire 
classes are not described.  The report should reflect all 
DD-paths in each DD-path class (e.g., in parentheses 
following the "leader" DD-path of the class) contained in 
the level-i path classes of the module. 

As a related general observation, a great deal of user 
confusion and uncertainty could be avoided by more 
careful use of the terms "level-i path" and "level-i path 
class" in both RXVP reports and user documentation. 

(b) During iteration of a set of RXVP commands for a group 
of modules specified by the module selection command 
FOR M0DULES=<modl>,<mod2> when continuation cards 
are required to complete the module specification, the 
system attempts to Interpret the continuation cards as 
RXVP commands as each new module is selected and reports 
them as unrecognizable.  Following this, the intended 
set of commands is processed correctly for each module 
in the group. 

(c) The STEP 8 denominator and product expression reports are 
not documented in the Reference Manual.  The MODE CHECK 
report is illustrated but there is no written explanation 
of the illustrations.  (It appears, in this latter case, 
that a page of text was omitted prior to printing the 

manual.) 

(d) In Table 4.1-2 of the Reference Manual, illustrating the 
method for overriding the STEP 4 default storage values, 
the COMMON block ONETST, containing the single test 
DD-path counters, is omitted. Likewise, the COMMON 
blocks CUMTST and DDPCUM are omitted from the lilt of 
default storage areas in Table 4.1-1. 

(e) ^he required execution verb, STRUCTURAL, is missing from 
the command sequence in the second example of Section 2.3 
of the Reference Manual. 

m The method given in Section 4.2.1 of the Reference Manual 
for continuing the list of MODULES REPORTING in STEP 4 

is incorrect. 

4.11.3 System-Level Statistics 

The approximate amount of memory required for each RXVP STEP, 

if installed as an independent entity, was previously given 

individually.  In some cases, the Standard Print Commands (requiring 
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approximately IISOOXQ words) were included with the STEP.  Installed 

as a series of overlays, a field length of less than 6000010 words 

was sufficient to permit access to all RXVP functions (except as 

discussed in Section 4.9). 

The files containing the RXVP binary modules themselves 

occupied approximately 192000 words of mass storage. 
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as iir.pl emeuted in RXVP, Level 1):  (1) testing coverage services, 

reporting what portions of a program have been exercised and in what 

combinations, both for an individual test case and cumulatively for a 

set of test cases; (2) test case data generation services, analyzing 

the properties of program segments of interest and backtracking to 

indicate appropriate states of the program input space to access those 

segments; and' (3) static analyses and reports reflecting both 

intra- and inter-module control and data flow, checking conformance 

with programming standards, reporting potential errors, etc. 

Regarding RXVP, Level 1, specifically: 

(1) The system provides an impressive array of services.  It is 
new to operational use, however, and some of these services 
are better developed than others.  There is a need for 
further refinement/improvement before the system achieves 
its full potential.  The design is such that incorporation 
of these and future enhancements should be possible without 

major revision of the total system. 

(2) A more elaborate syntax analyzer is required in STEP 1 to 
make the system compatible with specified FORTRAN dialects. 

(3) The DD-path structural mode] is not difficult to fathom and 
provides a convenient basis for examining the execution 

coverage of program logic . 

(A)  The utility of the iteration structure model in testing 
strategy guidance and test case construction assistance 
has not been adequately demonstrated. As currently defined, 
the model can fail to reflect actual iteration in a FORTRAN 
module.  It is, in addition, not for the casual use of the 
programmer since it requires some effort to learn and some 
continued application to retain proficiency in its use. 

(5) The static analysis features of STEP 8 represent a set of 
potentially very useful services. There is, however, room 
for improvement in the implementation of several current 
functions. A few additional capabilities would, in our 
estimation, improve the utility of the STEP. 

(6) There are critical errors in both the STEP 3 and STEP 6 
instrumentors which require corrections. 

(7) The core expansion produced by the instrumentation process 
can be a serious problem, particularly in testing programs 
close to the memory limit of the machine.  It is often 
necessary to instrument and test a portion of a program 
(or even a program module) at a time, later correlating the 
results of the separate executions manually.  In the same 
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vein, recording the execution trace file may become a 
problem when testing modules involving a considerable 
amount of iteration, particularly on systems having limited 
file space or which limit the number of file references. 

(8) The execution coverage reports and statement-level execution 
reports are excellent.  These are easily the best developed 
aspects of the system, although the STEP 5 (ANALYZER) 
reports offer little in addition to the STEP 4 (QUICKLOOK) 
reports as presently constituted. 

(9) The STEP 9 testing strategy guidance was not particularly 
well received.  It required too much knowledge of RXVP 
structural terminology and too much flipping of structural 
report pages to be conveniently used, and was based on a 
testing approach that was not widely accepted. 

(10) The STEP 10 test case construction assistance represents 
a good start, but requires more development.  In particular, 
logical as well as structural reachability needs to be 
considered and more backtracking capability provided if the 
assistance is to be of maximum benefit to the user. 

(11) The RXVP library files required what, at this installation, 
is a considerable amount of on-line storage.  The frequent 
inability to catalog library files for future reference 
resulted in a mode of operation which reduced the utility of 
the system. 

(12) An RXVP specialist to assist users in applying the system is 
recommended for any installation where a significant amount 
of use is anticipated, particularly if testing on other than 
the RXVP host machine is involved. 

Throughout this report it has been our objective to evaluate RXVP 

as it came to exist during the course of the project.  The items 

mentioned herein reflect the status of our installation as of 

October, 1975.  Any erroneous conclusions or inferences are a result 

of our still imperfect knowledge of the system, viewed from the 

perspective of a user. We hope the information presented will be of 

interest to both potential users and developers of this and other 

automated verification aids. 
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APPENDIX A 

RXVP Processing Statistics 

Table A.l presents statistics collected during RXVP processing 

of a set of FORTRAN programs of various types.  The following RXVP 

control options were used in the processing reflected by the 

statistics: 

STEP 1:  BASIC,CARD IMAr,ES=OFF. 
BASIC,COMMENTS=OFF. 

STEP 2:  STRUCTURAL,COMPUTE=FULL. 
STRUCTURAL,PRINT=FULL. 

(i.e.. Determine DD-paths, 
level-i paths, and complexity 
measures, and generate all 
STRUCTURAL reports.) 

STEP 8:  STATIC,ALL. (i.e.. Generate all static 
analyses and reports.) 

STEP 3:  INSTRUMENT,LIST=OFF. 

STEP 4:  QUICKLOOK,ALL MODULES. 
QUICKLOOK,ON. 

(i.e.. Generate all four 
QUICKLOOK reports for all 
modules reporting during the 
test execution.) 

STEP 5:  ANALYZER,ALL MODULES, 
ANALYZER,ALL. 

(i.e.. Produce all available 
STEP 5 reports covering all 
modules in the program.) 

STEP 7:  SMMALYZE,ALL MODULES. 
SMANALYZE,TYPE=SUMMARY, 

(i.e.. Produce a single, full 
statement-level report for 
each module summarizing the 
cumulative execution 
resulting from all invocations 

of the module.) 
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